Format

Send to

Choose Destination
Adv Exp Med Biol. 2008;624:283-95. doi: 10.1007/978-0-387-77574-6_22.

Apoptosis and pathogenesis of melanoma and nonmelanoma skin cancer.

Author information

1
Institute for Medical Microbiology, University of Basel, Basel, Switzerland. peter.erb@unibas.ch

Abstract

Skin cancers, i.e., basal cell carcinoma (BCC), squamous cell carcinoma (SCC) and melanoma, belong to the most frequent tumors. Their formation is based on constitutional and/or inherited factors usually combined with environmental factors, mainly UV-irradiation through long term sun exposure. UV-light can randomly induce DNA damage in keratinocytes, but it can also mutate genes essential for control and surveillance in the skin epidermis. Various repair and safety mechanisms exist to maintain the integrity of the skin epidermis. For example, UV-light damaged DNA is repaired and if this is not possible, the DNA damaged cells are eliminated by apoptosis (sunburn cells). This occurs under the control of the p53 suppressor gene. Fas-ligand (FasL), a member of the tumor necrosis superfamily, which is preferentially expressed in the basal layer of the skin epidermis, is a key surveillance molecule involved in the elimination of sunburn cells, but also in the prevention of cell transformation. However, UV light exposure downregulates FasL expression in keratinocytes and melanocytes leading to the loss of its sensor function. This increases the risk that transformed cells are not eliminated anymore. Moreover, important control and surveillance genes can also be directly affected by UV-light. Mutation in the p53 gene is the starting point for the formation of SCC and some forms of BCC. Other BCCs originate through UV light mediated mutations of genes of the hedgehog signaling pathway which are essential for the maintainance of cell growth and differentiation. The transcription factor Gli2 plays a key role within this pathway, indeed, Gli2 is responsible for the marked apoptosis resistance of the BCCs. The formation of malignant melanoma is very complex. Melanocytes form nevi and from the nevi melanoma can develop through mutations in various genes. Once the keratinocytes or melanocytes have been transformed they re-express FasL which may allow the expanding tumor to evade the attack of immune effector cells. FasL which is involved in immune evasion or genes which govern the apoptosis resistance, e.g., Gli2 could therefore be prime targets to prevent tumor formation and growth. Attempts to silence these genes by RNA interference using gene specific short interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs) have been functionally successful not only in tissue cultures and tumor tissues, but also in a mouse model. Thus, siRNAs and/or shRNAs may become a novel and promising approach to treat skin cancers at an early stage.

PMID:
18348464
DOI:
10.1007/978-0-387-77574-6_22
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center