Format

Send to

Choose Destination
See comment in PubMed Commons below
Chem Phys Lipids. 2008 May;153(1):3-13. doi: 10.1016/j.chemphyslip.2008.02.007. Epub 2008 Feb 23.

Docosahexaenoic acid (DHA) and hepatic gene transcription.

Author information

1
Department of Physiology, Michigan State University, East Lansing, MI 48824, United States. Donald.Jump@oregonstate.edu

Abstract

The type and quantity of dietary fat ingested contributes to the onset and progression of chronic diseases, like diabetes and atherosclerosis. The liver plays a central role in whole body lipid metabolism and responds rapidly to changes in dietary fat composition. Polyunsaturated fatty acids (PUFA) play a key role in membrane composition and function, metabolism and the control of gene expression. Certain PUFA, like the n-3 PUFA, enhance hepatic fatty acid oxidation and inhibit fatty acid synthesis and VLDL secretion, in part, by regulating gene expression. Our studies have established that key transcription factors, like PPARalpha, SREBP-1, ChREBP and MLX, are regulated by n-3 PUFA, which in turn control levels of proteins involved in lipid and carbohydrate metabolism. Of the n-3 PUFA, 22:6,n-3 has recently been established as a key controller of hepatic lipid synthesis. 22:6,n-3 controls the 26S proteasomal degradation of the nuclear form of SREBP-1. SREBP-1 is a major transcription factor that controls the expression of multiple genes involved fatty acid synthesis and desaturation. 22:6,n-3 suppresses nuclear SREBP-1, which in turn suppresses lipogenesis. This mechanism is achieved, in part, through control of the phosphorylation status of protein kinases. This review will examine both the general features of PUFA-regulated hepatic gene transcription and highlight the unique mechanisms by which 22:6,n-3 impacts gene expression. The outcome of this analysis will reveal that changes in hepatic 22:6,n-3 content has a major impact on hepatic lipid and carbohydrate metabolism. Moreover, the mechanisms involve 22:6,n-3 control of several well-known signaling pathways, such as Akt, Erk1/2, Gsk3beta and PKC (novel or atypical). 22:6,n-3 control of these same signaling pathways in non-hepatic tissues may help to explain the diverse actions of n-3 PUFA on such complex physiological processes as visual acuity and learning.

PMID:
18343222
PMCID:
PMC2430187
DOI:
10.1016/j.chemphyslip.2008.02.007
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center