Format

Send to

Choose Destination
Int J Biochem Cell Biol. 2008;40(9):1685-702. doi: 10.1016/j.biocel.2008.01.025. Epub 2008 Feb 1.

Cellular roles of ADAM12 in health and disease.

Author information

1
Department of Biomedical Sciences and Biotech Research and Innovation Centre, The Faculty of Health Sciences, Copenhagen University, Copenhagen Biocenter, Ole MaalĂžesvej 5, 2200 Copenhagen N, Denmark. marie.kveiborg@bric.dk

Abstract

ADAM12 belongs to the large family of ADAMs (a disintegrin and metalloproteases) and possesses extracellular metalloprotease and cell-binding functions, as well as intracellular signaling capacities. Interest in ADAM12 has increased recently because its expression is related to tumor progression and it is a potential biomarker for breast cancer. It is therefore important to understand ADAM12's functions. Many cellular roles for ADAM12 have been suggested. It is an active metalloprotease, and has been implicated in insulin-like growth factor (IGF) receptor signaling, through cleavage of IGF-binding proteins, and in epidermal growth factor receptor (EGFR) pathways, via ectodomain shedding of membrane-tethered EGFR ligands. These proteolytic events may regulate diverse cellular responses, such as altered cell differentiation, proliferation, migration, and invasion. ADAM12 may also regulate cell-cell and cell-extracellular matrix contacts through interactions with cell surface receptors - integrins and syndecans - potentially influencing the actin cytoskeleton. Moreover, ADAM12 interacts with several cytoplasmic signaling and adaptor molecules through its intracellular domain, thereby directly transmitting signals to or from the cell interior. These ADAM12-mediated cellular effects appear to be critical events in both biological and pathological processes. This review presents current knowledge on ADAM12 functions gained from in vitro and in vivo observations, describes ADAM12's role in both normal physiology and pathology, particularly in cancer, and discusses important areas for future investigation.

PMID:
18342566
DOI:
10.1016/j.biocel.2008.01.025
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center