Format

Send to

Choose Destination
See comment in PubMed Commons below
Med Biol Eng Comput. 2008 May;46(5):469-78. doi: 10.1007/s11517-008-0331-1.

Endothelial cytoskeletal elements are critical for flow-mediated dilation in human coronary arterioles.

Author information

1
The National Center for Research Resources, National Institutes of Health, Bethesda, MD, USA.

Abstract

Mitochondrial H2O2 contributes to flow-mediated dilation (FMD) in human coronary arterioles (HCA). We examined the hypothesis that the endothelial cytoskeleton plays a critical role in transducing endothelial wall shear stress into a stimulus for releasing mitochondrial ROS. Phallacidin together with alpha-, beta-tubulin antibodies and Mito-Tracker Red showed the proximity of F-actin, microtubules and mitochondria in endothelial cells. Cytochalasin D (CytoD) and nocodazole (Noc) disrupted endothelial F-actin and microtubules in HCA, respectively, concurrent with a reduction in the generation of cytosolic and H2O2 (hydroethidine and dichlorodihydrofluorescein fluorescence) and mitochondrial superoxide (mitoSox) during flow (control: 3.5 +/- 1.6, Cyto D: 0.51 +/- 0.2, Noc: 0.81 +/- 0.6). FMD, but not the dilation to bradykinin or papaverine, was reduced by Cyto D (26 +/- 10% vs. 56 +/- 3%) or Noc (26 +/- 11% vs. 58 +/- 7%). These results suggest that cytoskeletal elements are a critical component of the signaling mechanism linking endothelial shear stress and mitochondrial release of ROS in the human coronary microcirculation.

PMID:
18340474
PMCID:
PMC2702135
DOI:
10.1007/s11517-008-0331-1
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer Icon for PubMed Central
    Loading ...
    Support Center