Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2008 Mar 12;28(11):2726-34. doi: 10.1523/JNEUROSCI.5132-07.2008.

Electrophysiological and behavioral evidence demonstrating that predator detection alters adaptive behaviors in the snail Lymnaea.

Author information

  • 1Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada.

Abstract

Stress has been shown to both impair and enhance learning, long-term memory (LTM) formation, and/or its recall. The pond snail, Lymnaea stagnalis, both detects and responds to the scent of a crayfish predator with multiple stress-related behavioral responses. Using both behavioral and electrophysiological evidence, this investigation is a first attempt to characterize how an environmentally relevant stressor (scent of a predator) enhances LTM formation in Lymnaea. Using a training procedure that, in "standard" pond water (PW), results in an intermediate-term memory that persists for only 3 h, we found that training snails in "crayfish effluent" (CE) induces a memory that persists for 48 h (i.e., its now an LTM). In addition, if we use a training procedure that in PW produces an LTM that persists for 1 d, we find that snails trained in CE have an LTM that persists for at least 8 d. Furthermore, we describe how a single neuron (RPeD1), which has been shown to be a necessary site for LTM formation, reflects the behavioral changes in its firing properties that persist for the duration of the LTM. Finally, Lymnaea exhibit context-specific memory, that is, when a memory is formed in a specific context (food odorant), it is only recalled in that context. Here, we found that snails trained in CE demonstrate context generalization, that is, memory is recalled in multiple contexts. All data are consistent with the hypothesis that learning in a stressful, yet biologically relevant, environment enhances LTM and prolongs its retention.

PMID:
18337402
DOI:
10.1523/JNEUROSCI.5132-07.2008
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center