Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2008 May 2;283(18):11876-86. doi: 10.1074/jbc.M800589200. Epub 2008 Mar 11.

Covalent inactivation of factor VIII antibodies from hemophilia A patients by an electrophilic FVIII Analog.

Author information

1
Chemical Immunology Research Center, Department of Pathology, University of Texas-Houston Medical School, Houston, Texas 77030, USA.

Abstract

The antigen-binding sites of antibodies (Abs) can express enzyme-like nucleophiles that react covalently with electrophilic compounds. We examined the irreversible and specific inactivation of antibodies (Abs) to Factor VIII (FVIII) responsible for failure of FVIII replacement therapy in hemophilia A (HA) patients. Electrophilic analogs of FVIII (E-FVIII) and its C2 domain (E-C2) were prepared by placing the strongly electrophilic phosphonate groups at surface-exposed Lys side chains of diverse antigenic epitopes. IgG Abs to FVIII from HA patients formed stable immune complexes with E-FVIII and E-C2 that were refractory to dissociation by SDS treatment and boiling, procedures that dissociate noncovalent Ab-antigen complexes. The rate-limiting step in the reaction was formation of the initial noncovalent complexes. Conversion of the initial complexes to the irreversible state occurred rapidly. The antigenic epitopes of E-FVIII were largely intact, and most of the Abs were consumed covalently. E-FVIII expressed poor FVIII cofactor activity in clotting factor assays. Nonspecific interference by E-FVIII in clotting factor function was not evident. Treatment with E-FVIII, and to a lesser extent E-C2, irreversibly relieved the FVIII inhibitory effect of HA IgG in clotting factor assays. Small FVIII peptides did not display useful reactivity, highlighting the diverse epitope specificities of the Abs and the conformational character of FVIII epitopes. E-FVIII is a prototype reagent able to attain irreversible and specific inactivation of pathogenic Abs.

PMID:
18337255
PMCID:
PMC2335366
DOI:
10.1074/jbc.M800589200
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center