Format

Send to

Choose Destination
Mol Biochem Parasitol. 2008 May;159(1):30-43. doi: 10.1016/j.molbiopara.2008.01.003. Epub 2008 Feb 3.

Characterization of the mitochondrial inner membrane protein translocator Tim17 from Trypanosoma brucei.

Author information

1
Department of Microbial Pathogenesis and Immune Response, Meharry Medical College, Nashville, TN 37208, USA.

Abstract

Mitochondrial protein translocation machinery in the kinetoplastid parasites, like Trypanosoma brucei, has been characterized poorly. In T. brucei genome database, one homolog for a protein translocator of mitochondrial inner membrane (Tim) has been found, which is closely related to Tim17 from other species. The T. brucei Tim17 (TbTim17) has a molecular mass 16.2kDa and it possesses four characteristic transmembrane domains. The protein is localized in the mitochondrial inner membrane. The level of TbTim17 protein is 6-7-fold higher in the procyclic form that has a fully active mitochondrion, than in the mammalian bloodstream form of T. brucei, where many of the mitochondrial activities are suppressed. Knockdown of TbTim17 expression by RNAi caused a cessation of cell growth in the procyclic form and reduced growth rate in the bloodstream form. Depletion of TbTim17 decreased mitochondrial membrane potential more in the procyclic than bloodstream form. However, TbTim17 knockdown reduced the expression level of several nuclear encoded mitochondrial proteins in both the forms. Furthermore, import of presequence containing nuclear encoded mitochondrial proteins was significantly reduced in TbTim17 depleted mitochondria of the procyclic as well as the bloodstream form, confirming that TbTim17 is critical for mitochondrial protein import in both developmental forms. Together, these show that TbTim17 is the translocator of nuclear encoded mitochondrial proteins and its expression is regulated according to mitochondrial activities in T. brucei.

PMID:
18325611
PMCID:
PMC2954128
DOI:
10.1016/j.molbiopara.2008.01.003
[Indexed for MEDLINE]
Free PMC Article

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center