Send to

Choose Destination
Gastroenterology. 2008 Mar;134(3):768-80. doi: 10.1053/j.gastro.2007.12.043. Epub 2008 Jan 9.

Chronic enteric salmonella infection in mice leads to severe and persistent intestinal fibrosis.

Author information

Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada.



Intestinal fibrosis and stricture formation are serious complications of Crohn's disease, often requiring surgical intervention. Unfortunately, the mechanisms underlying intestinal fibrosis development are poorly understood, in part because of the lack of relevant animal models. Here, we present a novel murine model of severe and persistent intestinal fibrosis caused by chronic bacterial-induced colitis.


Mice were treated with streptomycin 24 hours prior to oral infection with Salmonella enterica serovar Typhimurium. Tissues were analyzed for bacterial colonization and inflammation, and fibrosis was assessed by Masson's trichrome staining and collagen quantification. Expression of the profibrotic cytokines transforming growth factor-beta1, connective tissue growth factor and insulin-like growth factor-I was determined, and the cell types present in fibrotic tissues were assessed by immunohistochemistry.


Infection led to chronic Salmonella colonization of the cecum and colon followed by edema, mucosal ulcerations, and severe transmural inflammation. This pathology was accompanied by significantly elevated expression of transforming growth factor-beta1, connective tissue growth factor, and insulin-like growth factor-I along with extensive type I collagen deposition in the cecal mucosa, submucosa, and muscularis mucosa of infected mice. Fibrosis was evident by 7 days postinfection, peaking at day 21 and still present at day 70. The fibrotic regions were found to be rich in fibroblasts and myofibroblasts.


These data demonstrate that chronic Salmonella infection of the murine gastrointestinal tract leads to severe tissue fibrosis. Because this model is highly reproducible and easy to perform, it provides great potential for investigating both host and bacterial contributions to intestinal fibrosis.

[Indexed for MEDLINE]

Publication type, MeSH terms, Substances, Grant support

Publication type

MeSH terms


Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center