Send to

Choose Destination
Appl Opt. 1999 Jul 1;38(19):4237-46.

Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements.

Author information

Department of Physics, The City College and Graduate Center of City University of New York, Institute for Ultrafast Spectroscopy and Lasers, New York State Center of Advanced Technology for Ultrafast Photonic Materials and Applications, New York, New York 10031, USA.


Optical imaging and localization of objects inside a highly scattering medium, such as a tumor in the breast, is a challenging problem with many practical applications. Conventional imaging methods generally provide only two-dimensional (2-D) images of limited spatial resolution with little diagnostic ability. Here we present an inversion algorithm that uses time-resolved transillumination measurements in the form of a sequence of picosecond-duration intensity patterns of transmitted ultrashort light pulses to reconstruct three-dimensional (3-D) images of an absorbing object located inside a slab of a highly scattering medium. The experimental arrangement used a 3-mm-diameter collimated beam of 800-nm, 150-fs, 1-kHz repetition rate light pulses from a Ti:sapphire laser and amplifier system to illuminate one side of the slab sample. An ultrafast gated intensified camera system that provides a minimum FWHM gate width of 80 ps recorded the 2-D intensity patterns of the light transmitted through the opposite side of the slab. The gate position was varied in steps of 100 ps over a 5-ns range to obtain a sequence of 2-D transmitted light intensity patterns of both less-scattered and multiple-scattered light for image reconstruction. The inversion algorithm is based on the diffusion approximation of the radiative transfer theory for photon transport in a turbid medium. It uses a Green s function perturbative approach under the Rytov approximation and combines a 2-D matrix inversion with a one-dimensional Fourier-transform inversion to achieve speedy 3-D image reconstruction. In addition to the lateral position, the method provides information about the axial position of the object as well, whereas the 2-D reconstruction methods yield only lateral position.


Supplemental Content

Loading ...
Support Center