Send to

Choose Destination
See comment in PubMed Commons below
Biosci Biotechnol Biochem. 2008 Mar;72(3):749-58. Epub 2008 Mar 7.

Crystal structure and functional analysis of an archaeal chromatin protein Alba from the hyperthermophilic archaeon Pyrococcus horikoshii OT3.

Author information

Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581, Japan.


The crystal structure of the Alba protein (PhoAlba) from a hyperthermophilic archaeon, Pyrococcus horikoshii OT3, was determined at a resolution of 2.8 A. PhoAlba structurally belongs to the alpha/beta proteins and is similar not only to archaeal homologues but also to RNA-binding proteins, including the C-terminal half of initiation factor 3 (IF3-C) from Bacillus stearothermophilus, an Esherichia coli protein implicated in cell division (Yhhp), and an Arabidopsis protein of unknown function. We found by gel shift assay that PhoAlba interacts with both ribonuclease P (RNase P) RNA (PhopRNA) and precursor-tRNA(Tyr) (pre-tRNA(Tyr)) in P. horikoshii. However, the addition of PhoAlba to reconstituted particles composed of PhopRNA and four or five protein subunits had little influence on either the pre-tRNA processing activity or the optimum temperature for the processing activity. These results suggest that PhoAlba contributes little to the catalytic activity of P. horikoshii RNase P.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for J-STAGE, Japan Science and Technology Information Aggregator, Electronic
    Loading ...
    Support Center