Send to

Choose Destination
See comment in PubMed Commons below
Microsc Res Tech. 2008 Jul;71(7):489-96. doi: 10.1002/jemt.20576.

Dislocation identification and in situ straining in the spinodal Fe30Ni20Mn25Al25 alloy.

Author information

  • 1Thayer School of Engineering at Dartmouth College, Hanover, New Hampshire 03755, USA.


Dislocations in the spinodal alloy Fe(30)Ni(20)Mn(25)Al(25), which is composed of alternating BCC and B2 (ordered BCC) phases, have been investigated using weak-beam transmission electron microscopy (TEM). The alloy was compressed at room temperature in an as-hot-extruded state to strains of approximately 3% for post-mortem dislocation analysis. Dislocations with a/2<111> Burgers vectors were found to glide in pairs on both {110} and {112} slip planes. TEM in situ straining experiments were also performed on both the as-extruded alloy and an arc-melted alloy. The in situ straining observations confirmed that dislocations were able to pass between both spinodal phases. Partial dislocation separations were relatively wide in the BCC phase and narrow in the B2 phase. Dislocation glide, as opposed to twinning (both of which have been observed in other BCC-based spinodals), was also found to be the only room temperature deformation mechanism.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk