Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2008 Mar 25;47(12):3636-44. doi: 10.1021/bi702078m. Epub 2008 Feb 29.

Substrate properties of ubiquitin carboxyl-terminally derived peptide probes for protein ubiquitination.

Author information

Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, New York 14260-3000, USA.


Protein ubiquitination is a widespread protein posttranslational modification in eukaryotes that regulates essentially every aspect of cellular processes. The attachment of ubiquitin to a protein substrate is accomplished through an enzymatic cascade involving the actions of an activating enzyme (E1), a conjugating enzyme (E2), and a ligase (E3). There are more than 600 E3 ligases estimated to exist in the human genome that regulate the targeting specificity of protein ubiquitination. To understand the dynamic role of protein ubiquitination in biological processes, robust tools need to be developed which can be employed to establish the substrate specificity of each of these E3 ligases. In this report, we show that the ubiquitin carboxyl-terminally derived peptide probes can serve as modest ubiquitin surrogates for the ubiquitination pathway. In the E1-catalyzed probe adenylation assay, peptide probe 3 with a RLRGG recognition sequence exhibited the highest activity, with the k cat/ K 1/2 determined to be 1.1 x 10 (4) M (-1) s (-1), roughly 470-fold lower than that of ubiquitin. The rate of transfer from the E1 peptide probe thioesters to E2 showed clear sequence dependency, with peptide probe 4 with an LRLRGG recognition sequence showed the fastest rate ( t 1/2 = 0.9 min), essentially identical to that of ubiquitin ( t 1/2 = 0.8 min) under our assay conditions. Furthermore, peptide probes 4 and 8 also exhibited the selective, parkin-mediated labeling of tubulins in a semipurified tubulin-parkin complex. Finally, these carboxyl-terminally derived peptide probes were shown to label the ubiquitination substrates in fraction II of the rabbit reticulocyte lysate with an efficiency parallel to their substrate properties. The selective use of these ubiquitin carboxyl-terminally derived peptide probes by the ubiquitination pathway suggests that perhaps more potent peptide ubiquitination probes based on the ubiquitin C-terminal scaffold can be developed through additional structural optimization.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center