Send to

Choose Destination
See comment in PubMed Commons below
Anal Chem. 2008 Apr 1;80(7):2311-8. doi: 10.1021/ac7021647. Epub 2008 Feb 28.

Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer.

Author information

Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA.


Methods for fabricating poly(methyl methacrylate) microchips using a novel two-stage embossing technique and solvent welding to form microchannels in microfluidic devices are presented. The hot embossing method involves a two-stage process to create the final microchip design. In its simplest form, a mold made of aluminum is fabricated using CNC machining to create the desired microchannel design. In this work, two polymer substrates with different glass transition temperatures (Tg), polyetherimide (PEI) and poly(methyl methacrylate) (PMMA), were used to make the reusable secondary master and the final chip. First, the aluminum mold was used to emboss the PEI, a polymeric substrate with Tg approximately 216 degrees C. The embossed PEI was then used as a secondary mold for embossing PMMA, a polymeric substrate with a lower Tg ( approximately 105 degrees C). The resulting PMMA substrate possessed the same features as those of the aluminum mold. Successful feature transfer from the aluminum mold to the PMMA substrate was verified by profilometry. Bonding of the embossed layer and a blank PMMA layer to generate the microchip was achieved by solvent welding. The embossed piece was first filled with water that formed a solid sacrificial layer when frozen. The ice layer prevented channel deformation when the welding solvent (dichloroethane) was applied between the two chips during bonding. Electrophoretic separations of fluorescent dyes, rhodamine B (Rh B) and fluorescein (FL), were performed on PMMA microchips to demonstrate the feasibility of the fabrication process for microreplication of useful devices for separations. The PMMA micro-chip was tested under an electric field strength of 705 V cm-1. Separations of the test mixture of Rh B and FL generated 55 500 and 66 300 theoretical plates/meter, respectively.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center