Format

Send to

Choose Destination
See comment in PubMed Commons below
Emerg Themes Epidemiol. 2008 Feb 26;5:5. doi: 10.1186/1742-7622-5-5.

The role of causal reasoning in understanding Simpson's paradox, Lord's paradox, and the suppression effect: covariate selection in the analysis of observational studies.

Author information

  • 1Department of Social Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. o.a.arah@amc.uva.nl

Abstract

Tu et al present an analysis of the equivalence of three paradoxes, namely, Simpson's, Lord's, and the suppression phenomena. They conclude that all three simply reiterate the occurrence of a change in the association of any two variables when a third variable is statistically controlled for. This is not surprising because reversal or change in magnitude is common in conditional analysis. At the heart of the phenomenon of change in magnitude, with or without reversal of effect estimate, is the question of which to use: the unadjusted (combined table) or adjusted (sub-table) estimate. Hence, Simpson's paradox and related phenomena are a problem of covariate selection and adjustment (when to adjust or not) in the causal analysis of non-experimental data. It cannot be overemphasized that although these paradoxes reveal the perils of using statistical criteria to guide causal analysis, they hold neither the explanations of the phenomenon they depict nor the pointers on how to avoid them. The explanations and solutions lie in causal reasoning which relies on background knowledge, not statistical criteria.

PMID:
18302750
PMCID:
PMC2266743
DOI:
10.1186/1742-7622-5-5
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for BioMed Central Icon for PubMed Central
    Loading ...
    Support Center