Send to

Choose Destination
See comment in PubMed Commons below
Ann Biomed Eng. 2008 Apr;36(4):586-95. doi: 10.1007/s10439-008-9465-4. Epub 2008 Feb 26.

Hemodynamic regulation of inflammation at the endothelial-neutrophil interface.

Author information

Department of Bioengineering, Institute for Medicine and Engineering, University of Pennsylvania, 1024 Vagelos Research Laboratory, 3340 Smith Walk, Philadelphia, PA 19104, USA.


Arterial shear stress can regulate endothelial phenotype. The potential for anti-inflammatory effects of shear stress on TNFalpha-activated endothelium was tested in assays of cytokine expression and neutrophil adhesion. In cultured human aortic endothelial cells (HAEC), arterial shear stress of 10 dyne/cm(2) blocked by >80% the induction by 5 ng/mL TNFalpha of interleukin-8 (IL-8) and IL-6 secretion (50 and 90% reduction, respectively, in the presence of nitric oxide synthase antagonism with 200 microM nitro-L-arginine methylester, L-NAME). Exposure of TNFalpha-stimulated HAEC to arterial shear stress for 5 h also reduced by 60% (p < 0.001) the conversion of neutrophil rolling to firm arrest in a venous flow assay conducted at 1 dyne/cm(2). Also, neutrophil rolling lengths at 1 dyne/cm(2) were longer when TNFalpha-stimulated HAEC were presheared for 5 h at arterial stresses. In experiments with a synthetic promoter that provides luciferase induction to detect cis interactions of glucocorticoid receptor (GR) and NFkappaB, shear stress caused a marked 40-fold induction of luciferase in TNFalpha-treated cells, suggesting a role for GR pathways in the anti-inflammatory actions of fluid shear stress. Hemodynamic force exerts anti-inflammatory effects on cytokine-activated endothelium by attenuation of cytokine expression and neutrophil firm arrest.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center