Send to

Choose Destination
Toxicol Lett. 2008 Mar 15;177(2):130-7. doi: 10.1016/j.toxlet.2008.01.006. Epub 2008 Jan 19.

Interleukin-8 induction by the environmental contaminant benzo(a)pyrene is aryl hydrocarbon receptor-dependent and leads to lung inflammation.

Author information

UMR-INSERM U620, Team Toxicity of Polycyclic Aromatic Hydrocarbons (labellisée Ligue contre le Cancer), IFR140, Université de Rennes 1, France.


Benzo(a)pyrene (BP) is an environmental contaminant known to favor airway inflammation likely through up-regulation of pro-inflammatory cytokines. The present study was designed to characterize its effects toward interleukin-8 (IL-8), a well-established pulmonary inflammatory cytokine. In primary human macrophages, BP was shown to induce IL-8 expression at both mRNA and secretion levels in a dose-dependent manner. Such an up-regulation was likely linked to aryl hydrocarbon receptor (AhR)-activation since BP-mediated IL-8 induction was reduced after AhR expression knock-down through RNA interference. Moreover, electrophoretic mobility shift assays (EMSAs) and chromatin immunoprecipitation experiments showed BP-triggered binding of AhR to a consensus xenobiotic responsive element (XRE) found in the human IL-8 promoter. Finally, BP administration to mice led to over-expression of keratinocyte chemoattractant (KC), the murine functional homologue of IL-8, in lung. It also triggered the recruitment of neutrophils in bronchoalveolar lavage (BAL) fluids, which was however fully abolished in the presence of a chemical antagonist of the KC/IL-8 receptors CXCR1/CXCR2, thus supporting the functional and crucial involvement of KC in BP-induced lung inflammation. Overall, these data highlight an AhR-dependent regulation of IL-8 in response to BP that likely contributes to the airway inflammatory effects of this environmental chemical.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center