Format

Send to

Choose Destination
See comment in PubMed Commons below
Scanning. 2008 Mar-Apr;30(2):59-64. doi: 10.1002/sca.20093.

Structural study of titanium oxide films synthesized by ion beam-assisted deposition.

Author information

1
Department of Chemistry and Nebraska Centre for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.

Abstract

The application of titanium dioxide (TiO(2)) films as surgical implant coatings for antibiotic attachment depends crucially on their available surface area and thus their surface morphology and crystallinity. Here, we report our fabrication of high Wenzel ratio TiO(2) films targeted to increase the film surface area using the ion beam-assisted deposition (IBAD) technique at high-deposition temperatures (approximately 610 degrees C). The modulation of the films' surface morphology was accomplished by varying the chemical identity of the concurrent ion beams bombarded on the films during the e-beam evaporation process. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to investigate the surface morphology of the as-deposited films. X-ray diffractometry (XRD) revealed that these nanocrystalline films primarily consist of anatase phase TiO(2). Wenzel ratio, the ratio of the actual surface area to the projected area, of IBAD films prepared with argon, oxygen, and nitrogen ion beams was measured to be 1.52, 1.31 and 1.49, respectively. The effect of the differences in chemical reactivity and ion size of these three type ion beams are discussed to explain the present results.

PMID:
18288715
DOI:
10.1002/sca.20093
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center