Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Ecol. 2008 Apr;17(7):1776-88. doi: 10.1111/j.1365-294X.2008.03671.x. Epub 2008 Feb 14.

Fire and ice: genetic structure of the Uinta ground squirrel (Spermophilus armatus) across the Yellowstone hotspot.

Author information

1
Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC 28403, USA.

Abstract

The range of the Uinta ground squirrel, Spermophilus armatus, is centred over one of the most tectonically active regions today, the Yellowstone hotspot. We document the role of Quaternary tectonic and climatic history on the genetic structure of this species by screening museum and extant individuals throughout its range. Phylogeographic, divergence time, and demographic analyses of partial mitochondrial cytochrome b and control region DNA sequences yield insight into the cadence of evolution across three spatiotemporal scales: (i) a relatively deep intraspecific divergence of S. armatus into three lineages coincident with the last major volcanic eruption in the region and maintained by the Snake River Plain; (ii) demographic expansion in two lineages corresponding to the time of last deglaciation of the region; and (iii) a recent (< 50 years) local extinction of the third lineage coincident with climatic change and conversion of habitat for agricultural purposes in eastern Idaho. Beyond these inferences, our study highlights the unique value of museum material to phylogeography, and shows that small mammal recolonization of previously glaciated montane 'islands' differs from northward postglacial expansion observed in areas previously covered by continental ice sheets. Montane 'islands' may harbour high genetic diversity because of admixture and recurrent expansion/extinction.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center