Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Heart Circ Physiol. 2008 Apr;294(4):H1939-47. doi: 10.1152/ajpheart.00644.2007. Epub 2008 Feb 15.

Myofilament mechanical performance is enhanced by R403Q myosin in mouse myocardium independent of sex.

Author information

Dept. of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA.


Male but not female mice carrying a single R403Q missense allele for cardiac alpha-myosin heavy chain (M-alphaMHC(R403Q/+) and F-alphaMHC(R403Q/+), respectively) develop significant hypertrophic cardiomyopathy (HCM) compared with male and female wild-type mice (M-alphaMHC(+/+) and F-alphaMHC(+/+), respectively) after approximately 30 wk of age. We tested the hypothesis that myofilament mechanical performance differs between M-alphaMHC(R403Q/+) and F-alphaMHC(R403Q/+) at younger ages (10-20 wk) and could account for sex differences in HCM development. The sensitivity of chemically skinned myocardial strips to Ca(2+) activation (pCa(50)) was significantly (P < 0.05) enhanced in male mice independent of genotype (M-alphaMHC(R403Q/+): 5.70 +/- 0.06, M-alphaMHC(+/+): 5.63 +/- 0.05, F-alphaMHC(R403Q/+): 5.57 +/- 0.03, F-alphaMHC(+/+): 5.54 +/- 0.04) by two-way ANOVA, whereas maximum developed tension was significantly enhanced in alpha-MHC(R403Q/+) independent of sex (M-alphaMHC(R403Q/+): 29.3 +/- 2.3, M-alphaMHC(+/+): 26.0 +/- 1.4, F-alphaMHC(R403Q/+): 30.2 +/- 2.1, F-alphaMHC(+/+): 26.2 +/- 1.2 mN/mm(2)). The frequency of maximum work generated by sinusoidal length perturbation was significantly higher in alphaMHC(R403Q/+) mice than in sex-matched controls (M-alphaMHC(R403Q/+): 2.26 +/- 0.47, M-alphaMHC(+/+): 1.29 +/- 0.18, F-alphaMHC(R403Q/+): 3.21 +/- 0.33, F-alphaMHC(+/+): 2.52 +/- 0.36 Hz). Unloaded shortening velocity was significantly enhanced in alphaMHC(R403Q/+) and in female mice (M-alphaMHC(R403Q/+): 2.26 +/- 0.47, M-alphaMHC(+/+): 1.29 +/- 0.18, F-alphaMHC(R403Q/+): 3.21 +/- 0.33, F-alphaMHC(+/+): 2.52 +/- 0.36 muscle lengths/s), and normalized mechanical power, calculated from the tension-velocity relationship, was significantly enhanced in alphaMHC(R403Q/+) independent of sex (M-alphaMHC(R403Q/+): 60 +/- 2 10(-3), M-alphaMHC(+/+): 37 +/- 3 10(-3), F-alphaMHC(R403Q/+): 57 +/- 3 10(-3), F-alphaMHC(+/+) 25 +/- 3 10(-3) muscle lengths/s x normalized tension). We did not find a statistically significant sex x mutation interaction for any measure of myofilament performance. Therefore, sarcomeric incorporation of the R403Q myosin similarly enhanced left ventricular myofilament mechanical performance in both male and female mice. The sex-dependent development of HCM due to the R403Q myosin may then be inhibited by female sex hormones, which may additionally underlie the observed sex differences for pCa(50) and unloaded shortening velocity.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center