Format

Send to

Choose Destination
Neuroscience. 2008 Mar 18;152(2):296-8. doi: 10.1016/j.neuroscience.2007.12.041. Epub 2008 Jan 9.

Lysophosphatidylcholine induces neuropathic pain through an action of autotaxin to generate lysophosphatidic acid.

Author information

1
Division of Molecular Pharmacology and Neuroscience, Nagasaki University, Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.

Abstract

Lysophosphatidic acid receptor (LPA(1)) signaling initiates neuropathic pain and several pathological events in a partial sciatic nerve injury model. Recently, we reported that lysophosphatidic acid (LPA) induces neuropathic pain as well as demyelination and pain-related protein expression changes via LPA(1) receptor signaling. Lysophosphatidylcholine (LPC), also known as lysolecithin, which is hydrolyzed by autotaxin/ATX into LPA, induces similar plastic changes. Here, we attempted to clarify whether ATX and LPA(1) receptor signaling is involved in the LPC-induced neuropathic pain. In wild-type mice, a single intrathecal (i.t.) injection of LPC induced mechanical allodynia and thermal hyperalgesia 2 days after injection; this persisted for 7 days at least. On the other hand, LPC-induced mechanical allodynia and thermal hyperalgesia were completely abolished in mice lacking an LPA(1) receptor gene. Furthermore, the LPC-induced response was also significantly, but partially reduced in heterozygous mutant mice for the ATX gene. These findings suggest that intrathecally-injected LPC is converted to LPA by ATX, and this LPA activates the LPA(1) receptor to initiate neuropathic pain.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center