Format

Send to

Choose Destination
See comment in PubMed Commons below
J Theor Biol. 2008 May 7;252(1):173-83. doi: 10.1016/j.jtbi.2008.01.001. Epub 2008 Jan 11.

Stochastic simulation of actin dynamics reveals the role of annealing and fragmentation.

Author information

1
Department of Neurobiology, Physiology and Behavior, University of California, Davis, CA 95616-8633, USA.

Abstract

Recent observations of F-actin dynamics call for theoretical models to interpret and understand the quantitative data. A number of existing models rely on simplifications and do not take into account F-actin fragmentation and annealing. We use Gillespie's algorithm for stochastic simulations of the F-actin dynamics including fragmentation and annealing. The simulations vividly illustrate that fragmentation and annealing have little influence on the shape of the polymerization curve and on nucleotide profiles within filaments but drastically affect the F-actin length distribution, making it exponential. We find that recent surprising measurements of high length diffusivity at the critical concentration cannot be explained by fragmentation and annealing events unless both fragmentation rates and frequency of undetected fragmentation and annealing events are greater than previously thought. The simulations compare well with experimentally measured actin polymerization data and lend additional support to a number of existing theoretical models.

PMID:
18279896
PMCID:
PMC2386518
DOI:
10.1016/j.jtbi.2008.01.001
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center