Format

Send to

Choose Destination
Langmuir. 2008 Mar 18;24(6):2494-500. doi: 10.1021/la703237m. Epub 2008 Feb 16.

Effects of changes in the interparticle separation induced by alkanethiols on the surface plasmon band and other properties of nanocrystalline gold films.

Author information

1
Chemistry and Physics of Material Unit and DST Unit on Nanoscience, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560064, India.

Abstract

Effects of changing the interparticle separation on the surface plasmon bands of ultrathin films of gold nanoparticles have been investigated by examining the interaction of alkanethiols of varying chain length on nanocrystalline gold films generated at the organic-aqueous interface. Adsorption of alkanethiols causes blue-shifts of the surface plasmon adsorption band, the magnitude of the shift being proportional to the chain length. The disordered nanocrystals thus created (lambdamax, 530 m) are in equilibrium with the ordered nanocrystals in the film (lambdamax, 700 m) as indicated by an isosbestic point around 600 nm. Long chain thiols disintegrate or disorder the gold films more effectively, as demonstrated by the increased population of the thiol-capped gold nanocrystals in solution. The rate of interaction of the thiols with the film decreases with the decreasing chain length. The effect of an alkanethiol on the spectrum of the gold film is specific, in that the effects with long and short chains are reversible. The changes in the plasmon band of gold due to interparticle separation can be satisfactorily modeled on the basis of the Maxwell-Garnett formalism. Spectroscopic studies, augmented by calorimetric measurements, suggest that the interaction of alkanethiols involves two steps, the first step being the exothermic gold film-thiol interaction and the second step includes the endothermic disordering process followed by further thiol capping of isolated gold particles.

PMID:
18278959
DOI:
10.1021/la703237m
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center