Send to

Choose Destination
See comment in PubMed Commons below
Am J Physiol Renal Physiol. 2008 Apr;294(4):F928-36. doi: 10.1152/ajprenal.00596.2007. Epub 2008 Feb 13.

Renal ischemia reperfusion inhibits VEGF expression and induces ADAMTS-1, a novel VEGF inhibitor.

Author information

Dept. of Cellular and Integrative Physiology, Indiana Univ. School of Medicine, 635 Barnhill Drive MS 334, Indianapolis, IN 46202, USA.


Reductions in vascular density occur following acute ischemia-reperfusion (I/R) injury that may predispose the development of chronic kidney disease. The mechanisms mediating vascular loss are not clear but may relate to the lack of effective vascular repair responses. To determine the regulation of the VEGF/VEGFR pathway following I/R injury, male Sprague-Dawley rats were subjected to bilateral renal ischemia (45 min) and allowed to recover for 1, 3, 7, and 35 days. VEGF mRNA expression was repressed by greater than 50% of control values up to 3 days postischemia, while VEGF protein was repressed for up to 7 days postischemia. The renal mRNA expression of receptors was not altered postischemia; however, VEGFR1 (flt-1) protein was transiently reduced in kidney while soluble flt-1 was elevated in plasma at 7 days following injury. Microarray analysis of angiogenesis-related genes identified the enhanced expression of a number of genes, among these was ADAMTS-1 (a disintegrin and metalloproteinase with thrombospondin motif-1), a secreted VEGF inhibitor. The altered expression of ADAMTS-1 was confirmed using RT-PCR and Western blot analysis; immunofluorescence localized its expression to proximal tubules following I/R injury. Other genes identified using microarray included aminopeptidase N, Smad-1, and Id-3 and their localization was also examined using immunohistochemistry. In summary, the data indicate no clear pattern of anti-angiogenic gene expression following renal I/R injury. However, the studies do suggest an overall inhibition of the VEGF pathway during the early injury and repair phase of renal ischemia that may contribute to an overall reduction in renal microvascular density.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center