Format

Send to

Choose Destination
Virus Res. 2008 Jun;134(1-2):124-46. doi: 10.1016/j.virusres.2007.12.015. Epub 2008 Feb 12.

Mechanisms of resistance to nucleoside analogue inhibitors of HIV-1 reverse transcriptase.

Author information

1
Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, c/Nicolás Cabrera, 1, Campus de Cantoblanco, 28049 Madrid, Spain. lmenendez@cbm.uam.es

Abstract

Human immunodeficiency virus (HIV) reverse transcriptase (RT) inhibitors can be classified into nucleoside and nonnucleoside RT inhibitors. Nucleoside RT inhibitors are converted to active triphosphate analogues and incorporated into the DNA in RT-catalyzed reactions. They act as chain terminators blocking DNA synthesis, since they lack the 3'-OH group required for the phosphodiester bond formation. Unfortunately, available therapies do not completely suppress viral replication, and the emergence of drug-resistant HIV variants is facilitated by the high adaptation capacity of the virus. Mutations in the RT-coding region selected during treatment with nucleoside analogues confer resistance through different mechanisms: (i) altering discrimination between nucleoside RT inhibitors and natural substrates (dNTPs) (e.g. Q151M, M184V, etc.), or (ii) increasing the RT's phosphorolytic activity (e.g. M41L, T215Y and other thymidine analogue resistance mutations), which in the presence of a pyrophosphate donor (usually ATP) allow the removal of chain-terminating inhibitors from the 3' end of the primer. Both mechanisms are implicated in multi-drug resistance. The excision reaction can be modulated by mutations conferring resistance to nucleoside or nonnucleoside RT inhibitors, and by amino acid substitutions that interfere with the proper binding of the template-primer, including mutations that affect RNase H activity. New developments in the field should contribute towards improving the efficacy of current therapies.

PMID:
18272247
DOI:
10.1016/j.virusres.2007.12.015
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center