Format

Send to

Choose Destination
See comment in PubMed Commons below
JAMA. 2008 Feb 13;299(6):637-45. doi: 10.1001/jama.299.6.637.

Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial.

Author information

1
Department of Medicine, McMaster University, Hamilton, Ontario, Canada. meadema@hhsc.ca

Abstract

CONTEXT:

Low-tidal-volume ventilation reduces mortality in critically ill patients with acute lung injury and acute respiratory distress syndrome. Instituting additional strategies to open collapsed lung tissue may further reduce mortality.

OBJECTIVE:

To compare an established low-tidal-volume ventilation strategy with an experimental strategy based on the original "open-lung approach," combining low tidal volume, lung recruitment maneuvers, and high positive-end-expiratory pressure.

DESIGN AND SETTING:

Randomized controlled trial with concealed allocation and blinded data analysis conducted between August 2000 and March 2006 in 30 intensive care units in Canada, Australia, and Saudi Arabia.

PATIENTS:

Nine hundred eighty-three consecutive patients with acute lung injury and a ratio of arterial oxygen tension to inspired oxygen fraction not exceeding 250.

INTERVENTIONS:

The control strategy included target tidal volumes of 6 mL/kg of predicted body weight, plateau airway pressures not exceeding 30 cm H2O, and conventional levels of positive end-expiratory pressure (n = 508). The experimental strategy included target tidal volumes of 6 mL/kg of predicted body weight, plateau pressures not exceeding 40 cm H2O, recruitment maneuvers, and higher positive end-expiratory pressures (n = 475).

MAIN OUTCOME MEASURE:

All-cause hospital mortality.

RESULTS:

Eighty-five percent of the 983 study patients met criteria for acute respiratory distress syndrome at enrollment. Tidal volumes remained similar in the 2 groups, and mean positive end-expiratory pressures were 14.6 (SD, 3.4) cm H2O in the experimental group vs 9.8 (SD, 2.7) cm H2O among controls during the first 72 hours (P < .001). All-cause hospital mortality rates were 36.4% and 40.4%, respectively (relative risk [RR], 0.90; 95% confidence interval [CI], 0.77-1.05; P = .19). Barotrauma rates were 11.2% and 9.1% (RR, 1.21; 95% CI, 0.83-1.75; P = .33). The experimental group had lower rates of refractory hypoxemia (4.6% vs 10.2%; RR, 0.54; 95% CI, 0.34-0.86; P = .01), death with refractory hypoxemia (4.2% vs 8.9%; RR, 0.56; 95% CI, 0.34-0.93; P = .03), and previously defined eligible use of rescue therapies (5.1% vs 9.3%; RR, 0.61; 95% CI, 0.38-0.99; P = .045).

CONCLUSIONS:

For patients with acute lung injury and acute respiratory distress syndrome, a multifaceted protocolized ventilation strategy designed to recruit and open the lung resulted in no significant difference in all-cause hospital mortality or barotrauma compared with an established low-tidal-volume protocolized ventilation strategy. This "open-lung" strategy did appear to improve secondary end points related to hypoxemia and use of rescue therapies.

TRIAL REGISTRATION:

clinicaltrials.gov Identifier: NCT00182195.

PMID:
18270352
DOI:
10.1001/jama.299.6.637
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center