Format

Send to

Choose Destination
See comment in PubMed Commons below
Brain. 2008 Apr;131(Pt 4):928-37. doi: 10.1093/brain/awn006. Epub 2008 Feb 7.

High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings.

Author information

1
Department of Neurology, Mayo Clinic, 200 First St. SW, Rochester, MN 55901, USA. worrell.gregory@mayo.edu

Abstract

Neuronal oscillations span a wide range of spatial and temporal scales that extend beyond traditional clinical EEG. Recent research suggests that high-frequency oscillations (HFO), in the ripple (80-250 Hz) and fast ripple (250-1000 Hz) frequency range, may be signatures of epileptogenic brain and involved in the generation of seizures. However, most research investigating HFO in humans comes from microwire recordings, whose relationship to standard clinical intracranial EEG (iEEG) has not been explored. In this study iEEG recordings (DC - 9000 Hz) were obtained from human medial temporal lobe using custom depth electrodes containing both microwires and clinical macroelectrodes. Ripple and fast-ripple HFO recorded from both microwires and clinical macroelectrodes were increased in seizure generating brain regions compared to control regions. The distribution of HFO frequencies recorded from the macroelectrodes was concentrated in the ripple frequency range, compared to a broad distribution of HFO frequencies recorded from microwires. The average frequency of ripple HFO recorded from macroelectrodes was lower than that recorded from microwires (143.3 +/- 49.3 Hz versus 116.3 +/- 38.4, Wilcoxon rank sum P<0.0001). Fast-ripple HFO were most often recorded on a single microwire, supporting the hypothesis that fast-ripple HFO are primarily generated by highly localized, sub-millimeter scale neuronal assemblies that are most effectively sampled by microwire electrodes. Future research will address the clinical utility of these recordings for localizing epileptogenic networks and understanding seizure generation.

PMID:
18263625
PMCID:
PMC2760070
DOI:
10.1093/brain/awn006
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems Icon for PubMed Central
    Loading ...
    Support Center