Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2008 Feb 7;451(7179):694-8. doi: 10.1038/nature06596.

An updatable holographic three-dimensional display.

Author information

1
College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA. savas.tay@optics.arizona.edu

Abstract

Holographic three-dimensional (3D) displays provide realistic images without the need for special eyewear, making them valuable tools for applications that require situational awareness, such as medical, industrial and military imaging. Currently commercially available holographic 3D displays use photopolymers that lack image-updating capability, resulting in restricted use and high cost. Photorefractive polymers are dynamic holographic recording materials that allow updating of images and have a wide range of applications, including optical correlation, imaging through scattering media and optical communication. To be suitable for 3D displays, photorefractive polymers need to have nearly 100% diffraction efficiency, fast writing time, hours of image persistence, rapid erasure, and large area-a combination of properties that has not been shown before. Here, we report an updatable holographic 3D display based on photorefractive polymers with such properties, capable of recording and displaying new images every few minutes. This is the largest photorefractive 3D display to date (4 x 4 inches in size); it can be recorded within a few minutes, viewed for several hours without the need for refreshing, and can be completely erased and updated with new images when desired.

PMID:
18256667
DOI:
10.1038/nature06596
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center