Format

Send to

Choose Destination
IEEE Trans Neural Netw. 1999;10(5):1055-64. doi: 10.1109/72.788646.

Support vector machines for histogram-based image classification.

Author information

1
Speech and Image Processing Services Research Laboratory, AT&T Labs-Research, Red Bank, NJ 07701, USA.

Abstract

Traditional classification approaches generalize poorly on image classification tasks, because of the high dimensionality of the feature space. This paper shows that support vector machines (SVM's) can generalize well on difficult image classification problems where the only features are high dimensional histograms. Heavy-tailed RBF kernels of the form K(x, y) = e(-rho)Sigma(i)/xia-yia/b with a < or = 1 and b < or = 2 are evaluated on the classification of images extracted from the Corel stock photo collection and shown to far outperform traditional polynomial or Gaussian radial basis function (RBF) kernels. Moreover, we observed that a simple remapping of the input x(i)-->x(i)(a) improves the performance of linear SVM's to such an extend that it makes them, for this problem, a valid alternative to RBF kernels.

PMID:
18252608
DOI:
10.1109/72.788646

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center