Format

Send to

Choose Destination
Exp Brain Res. 2008 Mar;185(3):359-81. doi: 10.1007/s00221-008-1280-5. Epub 2008 Feb 5.

A computational neuroanatomy for motor control.

Author information

1
Laboratory for Computational Motor Control, Department of Biomedical Engineering, Johns Hopkins School of Medicine, 410 Traylor Building, 720 Rutland Ave., Baltimore, MD 21205, USA. shadmehr@jhu.edu

Abstract

The study of patients to infer normal brain function has a long tradition in neurology and psychology. More recently, the motor system has been subject to quantitative and computational characterization. The purpose of this review is to argue that the lesion approach and theoretical motor control can mutually inform each other. Specifically, one may identify distinct motor control processes from computational models and map them onto specific deficits in patients. Here we review some of the impairments in motor control, motor learning and higher-order motor control in patients with lesions of the corticospinal tract, the cerebellum, parietal cortex, the basal ganglia, and the medial temporal lobe. We attempt to explain some of these impairments in terms of computational ideas such as state estimation, optimization, prediction, cost, and reward. We suggest that a function of the cerebellum is system identification: to build internal models that predict sensory outcome of motor commands and correct motor commands through internal feedback. A function of the parietal cortex is state estimation: to integrate the predicted proprioceptive and visual outcomes with sensory feedback to form a belief about how the commands affected the states of the body and the environment. A function of basal ganglia is related to optimal control: learning costs and rewards associated with sensory states and estimating the "cost-to-go" during execution of a motor task. Finally, functions of the primary and the premotor cortices are related to implementing the optimal control policy by transforming beliefs about proprioceptive and visual states, respectively, into motor commands.

PMID:
18251019
PMCID:
PMC2553854
DOI:
10.1007/s00221-008-1280-5
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center