Format

Send to

Choose Destination
IEEE Trans Image Process. 2001;10(1):117-30. doi: 10.1109/83.892448.

Image classification for content-based indexing.

Author information

1
Agilent Technologies, Palo Alto, CA 94303-0867, USA. aditya_vailaya@agilent.com

Abstract

Grouping images into (semantically) meaningful categories using low-level visual features is a challenging and important problem in content-based image retrieval. Using binary Bayesian classifiers, we attempt to capture high-level concepts from low-level image features under the constraint that the test image does belong to one of the classes. Specifically, we consider the hierarchical classification of vacation images; at the highest level, images are classified as indoor or outdoor; outdoor images are further classified as city or landscape; finally, a subset of landscape images is classified into sunset, forest, and mountain classes. We demonstrate that a small vector quantizer (whose optimal size is selected using a modified MDL criterion) can be used to model the class-conditional densities of the features, required by the Bayesian methodology. The classifiers have been designed and evaluated on a database of 6931 vacation photographs. Our system achieved a classification accuracy of 90.5% for indoor/outdoor, 95.3% for city/landscape, 96.6% for sunset/forest and mountain, and 96% for forest/mountain classification problems. We further develop a learning method to incrementally train the classifiers as additional data become available. We also show preliminary results for feature reduction using clustering techniques. Our goal is to combine multiple two-class classifiers into a single hierarchical classifier.

PMID:
18249602
DOI:
10.1109/83.892448

Supplemental Content

Full text links

Icon for IEEE Engineering in Medicine and Biology Society
Loading ...
Support Center