Send to

Choose Destination
Neuroscience. 2008 Feb 19;151(4):995-1005. doi: 10.1016/j.neuroscience.2007.09.088. Epub 2007 Dec 8.

Lack of photoreceptor signaling alters the expression of specific synaptic proteins in the retina.

Author information

Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 1524, 05508-900, São Paulo, SP, Brazil.


Synaptic modulation by activity-dependent changes constitutes a cellular mechanism for neuronal plasticity. However, it is not clear how the complete lack of neuronal signaling specifically affects elements involved in the communication between neurons. In the retina, it is now well established that both chemical and electrical synapses are essential to mediate the transmission of visual signaling triggered by the photoreceptors. In this study, we compared the expression of synaptic proteins in the retinas of wild-type (WT) vs. rd/rd mice, an animal model that displays inherited and specific ablation of photoreceptors caused by a mutation in the gene encoding the beta-subunit of rod cGMP-phosphodiesterase (Pde6brd1). We specifically examined the expression of connexins (Cx), the proteins that form the gap junction channels of electrical synapses, in addition to synaptophysin and synapsin I, which are involved in the release of neurotransmitters at chemical synapses. Our results revealed that Cx36 gene expression levels are lower in the retinas of rd/rd when compared with WT. Confocal analysis indicated that Cx36 immunolabeling almost disappeared in the outer plexiform layer without significant changes in protein distribution within the inner plexiform layer of rd/rd retinas. Likewise, synaptophysin expression remarkably decreased in the outer plexiform layer of rd/rd retinas, and this down-regulation was also associated with diminished transcript levels. Furthermore, we observed down-regulation of Cx57 gene expression in rd/rd retinas when compared with WT and also changes in protein distribution. Interestingly, Cx45 and synapsin I expression in rd/rd retinas showed no noticeable changes when compared with WT. Taken together, our results revealed that the loss of photoreceptors leads to decreased expression of some synaptic proteins. More importantly, this study provides evidence that neuronal activity regulates, but is not essential to maintain, the expression of synaptic elements.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center