Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2008 Feb 1;68(3):800-7. doi: 10.1158/0008-5472.CAN-07-2545.

ABCG2 expression and side population abundance regulated by a transforming growth factor beta-directed epithelial-mesenchymal transition.

Author information

Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA.


We describe here the regulation of ABCG2 expression and side population (SP) abundance in MCF7 human breast cancer cells. The level of ABCG2 mRNA and protein were increased in purified MCF7 SP relative to non-SP cells, and incubation with an ABCG2-specific inhibitor or ABCG2 short interfering RNA eliminated the MCF7 SP. The purified MCF7 SP could generate a heterogeneous population containing both SP and non-SP cells in culture. In vivo tumorigenicity experiments showed that the purified MCF7 SP has an increased ability to colonize the mouse mammary gland. Importantly, the MCF7 SP was depleted by a transforming growth factor-beta (TGFbeta)-directed epithelial-mesenchymal transition (EMT), and this effect was associated with a strong down-regulation of ABCG2 gene expression, and an increased sensitivity to mitoxantrone. ABCG2 expression and SP abundance were restored upon the removal of transforming growth factor-beta and reversion of the cells to an epithelial phenotype. Knock-down of E-cadherin also reduced SP abundance, but this effect was not accompanied by the loss of ABCG2 mRNA or protein. We conclude that ABCG2 expression in MCF7 cells is regulated during an EMT, and that the EMT effect reflects posttranslational regulation of ABCG2 function by E-cadherin as well as transcriptional repression of the ABCG2 gene.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center