Send to

Choose Destination
See comment in PubMed Commons below
IEEE Trans Image Process. 2002;11(7):746-55. doi: 10.1109/TIP.2002.801590.

Automatic image orientation detection.

Author information

Agilent Technologies, Palo Alto, CA 94303-0867, USA.


We present an algorithm for automatic image orientation estimation using a Bayesian learning framework. We demonstrate that a small codebook (the optimal size of codebook is selected using a modified MDL criterion) extracted from a learning vector quantizer (LVQ) can be used to estimate the class-conditional densities of the observed features needed for the Bayesian methodology. We further show how principal component analysis (PCA) and linear discriminant analysis (LDA) can be used as a feature extraction mechanism to remove redundancies in the high-dimensional feature vectors used for classification. The proposed method is compared with four different commonly used classifiers, namely k-nearest neighbor, support vector machine (SVM), a mixture of Gaussians, and hierarchical discriminating regression (HDR) tree. Experiments on a database of 16 344 images have shown that our proposed algorithm achieves an accuracy of approximately 98% on the training set and over 97% on an independent test set. A slight improvement in classification accuracy is achieved by employing classifier combination techniques.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for IEEE Engineering in Medicine and Biology Society
    Loading ...
    Support Center