Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochem Pharmacol. 2008 Mar 15;75(6):1402-10. doi: 10.1016/j.bcp.2007.12.003. Epub 2007 Dec 15.

Acetaminophen normalizes glucose homeostasis in mouse models for diabetes.

Author information

1
Department of Environmental Health and Center for Environmental Genetics, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA.

Abstract

Loss of pancreatic beta cell insulin secretion is the most important element in the progression of type 1 and type 2 diabetes. Since oxidative stress is involved in the progressive loss of beta cell function, we evaluated the potential for the over-the-counter analgesic drug and antioxidant, acetaminophen (APAP), to intervene in the diabetogenic process. We used mouse models for type 1 diabetes (streptozotocin) and type 2 diabetes (high-fat diet) to examine the ability of APAP to intervene in the progression of diabetes. In C57BL/6J mice, streptozotocin caused a dosage dependent increase in fasting blood glucose (FBG), from 100 to >600mg/dl. Daily APAP (20mg/kg BW, gastric gavage), significantly prevented and partially reversed the increase in FBG levels produced by streptozotocin. After 10 weeks on a high-fat diet, mice developed fasting hyperinsulemia and impaired glucose tolerance compared to animals fed a control diet. APAP largely prevented these changes in insulin and glucose tolerance. Furthermore, APAP prevented most of the increase in body fat in mice fed the high-fat diet. One protective mechanism for APAP is suggested by studies using isolated liver mitochondria, where low micromolar concentrations abolished the production of reactive oxygen that might otherwise contribute to the destruction of pancreatic beta-cells. These findings suggest that administration of APAP to mice, in a dosage used safely by humans, reduces the production of mitochondrial reactive oxygen and concomitantly prevents the development of type 1 and type 2 diabetes in established animal models.

PMID:
18237716
DOI:
10.1016/j.bcp.2007.12.003
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center