Format

Send to

Choose Destination
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Dec;76(6 Pt 2):066102. Epub 2007 Dec 7.

Modularity and community detection in bipartite networks.

Author information

1
Austrian Research Centers GmbH-ARC, Bereich Systems Research, Vienna, Austria. michael.barber@arcs.ac.at

Abstract

The modularity of a network quantifies the extent, relative to a null model network, to which vertices cluster into community groups. We define a null model appropriate for bipartite networks, and use it to define a bipartite modularity. The bipartite modularity is presented in terms of a modularity matrix B; some key properties of the eigenspectrum of B are identified and used to describe an algorithm for identifying modules in bipartite networks. The algorithm is based on the idea that the modules in the two parts of the network are dependent, with each part mutually being used to induce the vertices for the other part into the modules. We apply the algorithm to real-world network data, showing that the algorithm successfully identifies the modular structure of bipartite networks.

PMID:
18233893
DOI:
10.1103/PhysRevE.76.066102

Supplemental Content

Loading ...
Support Center