Format

Send to

Choose Destination
Appl Microbiol Biotechnol. 2008 Mar;78(4):709-17. doi: 10.1007/s00253-008-1343-3. Epub 2008 Jan 29.

Degradation of 4-fluorophenol by Arthrobacter sp. strain IF1.

Author information

1
Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, NL-9747 AG, Groningen, The Netherlands.

Abstract

A Gram-positive bacterial strain capable of aerobic biodegradation of 4-fluorophenol (4-FP) as the sole source of carbon and energy was isolated by selective enrichment from soil samples collected near an industrial site. The organism, designated strain IF1, was identified as a member of the genus Arthrobacter on the basis of 16S ribosomal RNA gene sequence analysis. Arthrobacter strain IF1 was able to mineralize 4-FP up to concentrations of 5 mM in batch culture. Stoichiometric release of fluoride ions was observed, suggesting that there is no formation of halogenated dead-end products during 4-FP metabolism. The degradative pathway of 4-FP was investigated using enzyme assays and identification of intermediates by gas chromatography (GC), GC-mass spectrometry (MS), high-performance liquid chromatography, and liquid chromatography-MS. Cell-free extracts of 4-FP-grown cells contained no activity for catechol 1,2-dioxygenase or catechol 2,3-dioxygenase, which indicates that the pathway does not proceed through a catechol intermediate. Cells grown on 4-FP oxidized 4-FP, hydroquinone, and hydroxyquinol but not 4-fluorocatechol. During 4-FP metabolism, hydroquinone accumulated as a product. Hydroquinone could be converted to hydroxyquinol, which was further transformed into maleylacetic acid and beta-ketoadipic acid. These results indicate that the biodegradation of 4-FP starts with a 4-FP monooxygenase reaction that yields benzoquinone, which is reduced to hydroquinone and further metabolized via the beta-ketoadipic acid pathway.

PMID:
18228015
PMCID:
PMC2266783
DOI:
10.1007/s00253-008-1343-3
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center