Send to

Choose Destination
See comment in PubMed Commons below
Langmuir. 2008 Mar 18;24(6):2688-94. doi: 10.1021/la7022456. Epub 2008 Jan 29.

Elucidation of protein adsorption behavior on polymeric surfaces: toward high-density, high-payload protein templates.

Author information

  • 1Department of Chemical Engineering, The Pennsylvania State University, 160 Fenske Laboratory, University Park, Pennsylvania 16802, USA.


The elucidation of protein adsorption behavior on polymeric surfaces is very important, since their use as arrays and carriers of biomolecules is ever growing for a wide variety of bioapplications. We evaluate protein adsorption characteristics on chemically homogeneous and heterogeneous polymeric surfaces by employing polystyrene-block-polymethylmethacrylate (PS-b-PMMA) diblock copolymer, PS homopolymer, PMMA homopolymer, and PS/PMMA blend as protein templates. We also investigate distance-dependent protein adsorption behavior on the interfacial region between PS and PMMA. We observe selective protein adsorption exclusively onto PS areas for the chemically heterogeneous PS-b-PMMA and PS/PMMA blend templates. On blend films, protein adsorption is highly favored on the PS regions located near the PS:PMMA interface over that on the PS areas situated away from the interface. Protein density on PS domains is inversely proportional to the separation distance between two neighboring PS:PMMA interfaces. We also observe a higher protein density on the PS-b-PMMA than on the PS or PMMA homopolymer templates. This effect is due to the fact that chemically heterogeneous PS-b-PMMA presents periodically spaced PS:PMMA interfaces on the nanometer scale, whereas no such interfaces are present on homopolymer films. The density of protein molecules on the heterogeneous PS-b-PMMA surface is approximately 3-4-fold higher than on the homogeneous PS surface for the identical experimental conditions. These results demonstrate that self-assembling, chemically heterogeneous, nanoscale domains in PS-b-PMMA diblock copolymers can be used as excellent, high-payload, high-density protein templates. The unique advantages of the diblock copolymer may prove the spontaneously constructed protein nanotemplates to be highly suitable as functional substrates in many proteomics applications.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center