Format

Send to

Choose Destination
See comment in PubMed Commons below
Exp Gerontol. 2008 Apr;43(4):296-306. doi: 10.1016/j.exger.2007.12.005. Epub 2007 Dec 15.

Age-related cardiac muscle sarcopenia: Combining experimental and mathematical modeling to identify mechanisms.

Author information

1
Department of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.

Abstract

Age-related skeletal muscle sarcopenia has been extensively studied and smooth muscle sarcopenia has been recently described, but age-related cardiac sarcopenia has not been previously examined. Therefore, we evaluated adult (7.5+/-0.5 months; n = 27) and senescent (31.8+/-0.4 months; n = 26) C57BL/6J mice for cardiac sarcopenia using physiological, histological, and biochemical assessments. Mice do not develop hypertension, even into senescence, which allowed us to decouple vascular effects and monitor cardiac-dependent variables. We then developed a mathematical model to describe the relationship between age-related changes in cardiac muscle structure and function. Our results showed that, compared to adult mice, senescent mice demonstrated increased left ventricular (LV) end diastolic dimension, decreased wall thickness, and decreased ejection fraction, indicating dilation and reduced contractile performance. Myocyte numbers decreased, and interstitial fibrosis was punctated but doubled in the senescent mice, indicating reparative fibrosis. Electrocardiogram analysis showed that PR interval and QRS interval increased and R amplitude decreased in the senescent mice, indicating prolonged conduction times consistent with increased fibrosis. Intracellular lipid accumulation was accompanied by a decrease in glycogen stores in the senescent mice. Mathematical simulation indicated that changes in LV dimension, collagen deposition, wall stress, and wall stiffness precede LV dysfunction. We conclude that age-related cardiac sarcopenia occurs in mice and that LV remodeling due to increased end diastolic pressure could be an underlying mechanism for age-related LV dysfunction.

PMID:
18221848
PMCID:
PMC2323436
DOI:
10.1016/j.exger.2007.12.005
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science Icon for PubMed Central
    Loading ...
    Support Center