Format

Send to

Choose Destination
Immunome Res. 2008 Jan 25;4:2. doi: 10.1186/1745-7580-4-2.

Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries.

Author information

1
La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA. jsidney@liai.org

Abstract

BACKGROUND:

It has been previously shown that combinatorial peptide libraries are a useful tool to characterize the binding specificity of class I MHC molecules. Compared to other methodologies, such as pool sequencing or measuring the affinities of individual peptides, utilizing positional scanning combinatorial libraries provides a baseline characterization of MHC molecular specificity that is cost effective, quantitative and unbiased.

RESULTS:

Here, we present a large-scale application of this technology to 19 different human and mouse class I alleles. These include very well characterized alleles (e.g. HLA A*0201), alleles with little previous data available (e.g. HLA A*3201), and alleles with conflicting previous reports on specificity (e.g. HLA A*3001). For all alleles, the positional scanning combinatorial libraries were able to elucidate distinct binding patterns defined with a uniform approach, which we make available here. We introduce a heuristic method to translate this data into classical definitions of main and secondary anchor positions and their preferred residues. Finally, we validate that these matrices can be used to identify candidate MHC binding peptides and T cell epitopes in the vaccinia virus and influenza virus systems, respectively.

CONCLUSION:

These data confirm, on a large scale, including 15 human and 4 mouse class I alleles, the efficacy of the positional scanning combinatorial library approach for describing MHC class I binding specificity and identifying high affinity binding peptides. These libraries were shown to be useful for identifying specific primary and secondary anchor positions, and thereby simpler motifs, analogous to those described by other approaches. The present study also provides matrices useful for predicting high affinity binders for several alleles for which detailed quantitative descriptions of binding specificity were previously unavailable, including A*3001, A*3201, B*0801, B*1501 and B*1503.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center