Send to

Choose Destination
See comment in PubMed Commons below
Cell Death Differ. 2008 Apr;15(4):739-50. doi: 10.1038/sj.cdd.4402303. Epub 2008 Jan 25.

SENP1 mediates TNF-induced desumoylation and cytoplasmic translocation of HIPK1 to enhance ASK1-dependent apoptosis.

Author information

The Department of Hepatobiliary Surgery, Nanfang Hospital, Southern Medical University, PR China.


We have previously shown that tumor necrosis factor (TNF)-induced desumoylation and subsequent cytoplasmic translocation of HIPK1 are critical for ASK1-JNK activation. However, the mechanism by which TNF induces desumoylation of HIPK1 is unclear. Here, we show that SENP1, a SUMO-specific protease, specifically deconjugates SUMO from HIPK1 in vitro and in vivo. In resting endothelial cells (ECs), SENP1 is localized in the cytoplasm where it is complexed with an antioxidant protein thioredoxin. TNF induces the release of SENP1 from thioredoxin as well as nuclear translocation of SENP1. TNF-induced SENP1 nuclear translocation is specifically blocked by antioxidants such as N-acetyl-cysteine, suggesting that TNF-induced translocation of SENP1 is ROS dependent. TNF-induced nuclear import of SENP1 kinetically correlates with HIPK1 desumoylation and cytoplasmic translocation. Furthermore, the wild-type form of SENP1 enhances, whereas the catalytic-inactive mutant form or siRNA of SENP1 blocks, TNF-induced desumoylation and cytoplasmic translocation of HIPK1 as well as TNF-induced ASK1-JNK activation. More importantly, these critical functions of SENP1 in TNF signaling were further confirmed in mouse embryonic fibroblast cells derived from SENP1-knockout mice. We conclude that SENP1 mediates TNF-induced desumoylation and translocation of HIPK1, leading to an enhanced ASK1-dependent apoptosis.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center