Send to

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2008 Feb;211(Pt 3):433-46. doi: 10.1242/jeb.012385.

Neuromechanical response of musculo-skeletal structures in cockroaches during rapid running on rough terrain.

Author information

Department of Integrative Biology, University of California, Berkeley, CA 94720, USA.


A musculo-skeletal structure can stabilize rapid locomotion using neural and/or mechanical feedback. Neural feedback results in an altered feedforward activation pattern, whereas mechanical feedback using visco-elastic structures does not require a change in the neural motor code. We selected musculo-skeletal structures in the cockroach (Blaberus discoidalis) because their single motor neuron innervation allows the simplest possible characterization of activation. We ran cockroaches over a track with randomized blocks of heights up to three times the animal's ;hip' (1.5 cm), while recording muscle action potentials (MAPs) from a set of putative control musculo-skeletal structures (femoral extensors 178 and 179). Animals experienced significant perturbations in body pitch, roll and yaw, but reduced speed by less than 20%. Surprisingly, we discovered no significant difference in the distribution of the number of MAPs, the interspike interval, burst phase or interburst period between flat and rough terrain trials. During a few very large perturbations or when a single leg failed to make contact throughout stance, neural feedback was detectable as a phase shift of the central rhythm and alteration of MAP number. System level responses of appendages were consistent with a dominant role of mechanical feedback. Duty factors and gait phases did not change for cockroaches running on flat versus rough terrain. Cockroaches did not use a follow-the-leader gait requiring compensatory corrections on a step-by-step basis. Arthropods appear to simplify control on rough terrain by rapid running that uses kinetic energy to bridge gaps between footholds and distributed mechanical feedback to stabilize the body.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center