Format

Send to

Choose Destination
Cell Cycle. 2008 Jan 1;7(1):96-105. Epub 2007 Oct 2.

Yeast Chfr homologs retard cell cycle at G1 and G2/M via Ubc4 and Ubc13/Mms2-dependent ubiquitination.

Author information

1
Department of Genetics and Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA.

Abstract

Checkpoint with forkhead-associated and RING (Chfr) is a ubiquitin ligase (E3) that establishes an antephase or prometaphase checkpoint in response to mitotic stress. Though ubiquitination is essential for checkpoint function, the sites, linkages and ubiquitin conjugating enzyme (E2) specificity are controversial. Here we dissect the function of the two Chfr homologs in S. cerevisiae, Chf1 and Chf2, overexpression of which retard cell cycle at both G(1) and G(2). Using a genetic assay, we establish that Ubc4 is required for Chf2-dependent G(1) cell cycle delay and Chf protein turnover. In contrast, Ubc13/Mms2 is required for G(2) delay and does not contribute to Chf protein turnover. By reconstituting cis and trans-ubiquitination activities of Chf proteins in purified systems and characterizing sites modified and linkages formed by tandem mass spectrometry, we discovered that Ubc13/Mms2- dependent modifications are a distinct subset of those catalyzed by Ubc4. Mutagenesis of Lys residues identified in vitro indicates that site-specific Ubc4-dependent Chf protein autoubiquitination is responsible for Chf protein turnover. Thus, combined genetic and biochemical analyses indicate that Chf proteins have dual E2 specificity accounting for different functions in the cell cycle.

PMID:
18202552
PMCID:
PMC2292246
DOI:
10.4161/cc.7.1.5113
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Taylor & Francis Icon for PubMed Central
Loading ...
Support Center