Format

Send to

Choose Destination
See comment in PubMed Commons below
Circ Res. 2008 Mar 14;102(5):589-96. doi: 10.1161/CIRCRESAHA.107.164970. Epub 2008 Jan 17.

Ambient particulate pollutants in the ultrafine range promote early atherosclerosis and systemic oxidative stress.

Author information

1
Department of Medicine, David Geffen School of Medicine, 10833 Le Conte Ave, CHS 52-175, Box 951680, Los Angeles, CA 90095, USA.

Abstract

Air pollution is associated with significant adverse health effects, including increased cardiovascular morbidity and mortality. Exposure to particulate matter with an aerodynamic diameter of <2.5 microm (PM(2.5)) increases ischemic cardiovascular events and promotes atherosclerosis. Moreover, there is increasing evidence that the smallest pollutant particles pose the greatest danger because of their high content of organic chemicals and prooxidative potential. To test this hypothesis, we compared the proatherogenic effects of ambient particles of <0.18 microm (ultrafine particles) with particles of <2.5 microm in genetically susceptible (apolipoprotein E-deficient) mice. These animals were exposed to concentrated ultrafine particles, concentrated particles of <2.5 microm, or filtered air in a mobile animal facility close to a Los Angeles freeway. Ultrafine particle-exposed mice exhibited significantly larger early atherosclerotic lesions than mice exposed to PM(2.5) or filtered air. Exposure to ultrafine particles also resulted in an inhibition of the antiinflammatory capacity of plasma high-density lipoprotein and greater systemic oxidative stress as evidenced by a significant increase in hepatic malondialdehyde levels and upregulation of Nrf2-regulated antioxidant genes. We conclude that ultrafine particles concentrate the proatherogenic effects of ambient PM and may constitute a significant cardiovascular risk factor.

PMID:
18202315
PMCID:
PMC3014059
DOI:
10.1161/CIRCRESAHA.107.164970
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center