Format

Send to

Choose Destination
See comment in PubMed Commons below
Exp Neurol. 2008 Apr;210(2):359-67. doi: 10.1016/j.expneurol.2007.11.009. Epub 2007 Nov 29.

Prominently decreased hippocampal neurogenesis in a spontaneous model of type 1 diabetes, the nonobese diabetic mouse.

Author information

1
Institute of Biology and Experimental Medicine, CONICET, Laboratory of Neuroendocrine Biochemistry, Obligado 2490 (1428), Buenos Aires, Argentina.

Abstract

In human diabetes, degenerative and functional disorders of the central nervous system, including depression, are common findings. Defective dentate gyrus (DG) neurogenesis is associated with affective-related disorders and depression. We previously demonstrated reduced DG neurogenesis in a pharmacological type 1 diabetes model, the streptozotocin (STZ)-treated mouse. Here, we explored DG neurogenesis in a spontaneous T1D model, the nonobese diabetic (NOD) mouse, at prediabetic and diabetic stages. Cell proliferation was assessed in the DG of 5, 8 and 12-week-old control C57BL/6 and BALB/c strains and NOD mice, killed 2 h after bromodeoxyuridine (BrdU) administration. Survival of the newly generated cells was studied in 15-week-old animals that were killed 21 days after BrdU injection. The number of proliferative BrdU-positive cells in the DG was, regardless of age, constantly and significantly lower in NOD than in control strains, showing the presence of hippocampal alterations far before clinical diabetes onset in NOD mice. Diabetes also strongly decreased cell survival in NOD DG. However, cell phenotype proportion, as assessed by co-localization with neuronal or glial markers and confocal microscopy, was not modified. Hippocampal neurogenesis is strongly diminished in the spontaneous NOD model, like in the STZ model. Notably, NOD hippocampal DG cell proliferation defect takes place during the prediabetic stage. Whether this early alteration might result, in this autoimmune strain, from hypothalamo-pituitary adrenal axis alterations and/or ongoing brain inflammatory process sharing many characteristics of aging is discussed and deserves further investigation.

PMID:
18190910
DOI:
10.1016/j.expneurol.2007.11.009
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center