Send to

Choose Destination
Dev Neurobiol. 2008 Apr;68(5):559-74. doi: 10.1002/dneu.20593.

Integrins and dystroglycan regulate astrocyte wound healing: the integrin beta1 subunit is necessary for process extension and orienting the microtubular network.

Author information

Centre for Research in Neuroscience, McGill University Health Centre, Montreal, Quebec, Canada H3G 1A4.


Monolayers of astrocytes in culture respond to a scrape wound by orienting towards the wound and extending processes that will repair it. We show here that they also upregulate the expression of extracellular matrix (ECM) proteins, laminin, and chondroitin sulfated proteoglycan, that are deposited in astrocytic scars in vivo. We have previously shown that the major functional ECM receptors on astrocytes are dystroglycan (DG) plus integrins alpha1beta1, alpha5beta1, alpha6beta1, and alphavbeta3. Consistent with this, laminin fragments that activate alpha1beta1 integrin, alpha6beta1 integrin, and DG all contribute to attachment. During astrocyte attachment, or process extension, integrins and DG are found at the leading edge of the lammelipodium, though they change in distribution with the extent of attachment and the alpha and beta subunits of DG can be spatially uncoupled. Functionally, inhibitory antibodies to DG and integrin alpha1beta1 or the RGD peptide all inhibit process extension, showing that ligand engagement of integrins and DG contribute to process extension. Astrocytes differentiated from DG or beta1 null ES cells respond very differently to wounding. The former fail to extend process and cell polarization is disrupted partially. However, beta1 null astrocytes not only fail to extend processes perpendicular to the wound, but cell polarization is completely disrupted and cells migrate randomly into the wound. We conclude that integrins are essential for astrocyte polarity.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center