Send to

Choose Destination
See comment in PubMed Commons below
Opt Lett. 1997 Jan 15;22(2):120-2.

Use of a scanning near-field optical microscope architecture to study fluorescence and energy transfer near a metal.


Fluorescence intensity depends strongly on the distance between the emitting molecule and a metallic interface. We show that a scanning near-field optical microscope (SNOM) is a simple and versatile tool for studying such an effect. The fluorescent molecules are embedded in a layer upon a silica substrate, and metal is coated on the SNOM tip. We present variations of fluorescence intensity versus tip-sample distance from 800 to ~80 nm . A simple model is used to explain the experimental results. The proposed setup could be used to study nonradiative transfer at a nanometric scale. It could also yield to a new type of optical near-field profiler that uses fluorescent signal.

PubMed Commons home

PubMed Commons


    Supplemental Content

    Loading ...
    Support Center