Format

Send to

Choose Destination
J Cell Physiol. 2008 Jun;215(3):771-81. doi: 10.1002/jcp.21356.

Cytochrome P450 (CYP) 2J2 gene transfection attenuates MMP-9 via inhibition of NF-kappabeta in hyperhomocysteinemia.

Author information

1
Department of Physiology and Biophysics, School of Medicine University of Louisville, Louisville, Kentucky 40202, USA.

Abstract

Hyperhomocysteinemia (HHcy) is associated with atherosclerotic events involving the modulation of arachidonic acid (AA) metabolism and the activation of matrix metalloproteinase-9 (MMP-9). Cytochrome P450 (CYP) epoxygenase-2J2 (CYP2J2) is abundant in the heart endothelium, and its AA metabolites epoxyeicosatrienoic acids (EETs) mitigates inflammation through NF-kappabeta. However, the underlying molecular mechanisms for MMP-9 regulation by CYP2J2 in HHcy remain obscure. We sought to determine the molecular mechanisms by which P450 epoxygenase gene transfection or EETs supplementation attenuate homocysteine (Hcy)-induced MMP-9 activation. CYP2J2 was over-expressed in mouse aortic endothelial cells (MAECs) by transfection with the pcDNA3.1/CYP2J2 vector. The effects of P450 epoxygenase transfection or exogenous supplementation of EETs on NF-kappabeta-mediated MMP-9 regulation were evaluated using Western blot, in-gel gelatin zymography, electromobility shift assay, immunocytochemistry. The result suggested that Hcy downregulated CYP2J2 protein expression and dephosphorylated PI3K-dependent AKT signal. Hcy induced the nuclear translocation of NF-kappabeta via downregulation of IKbetaalpha (endogenous cytoplasmic inhibitor of NF-kappabeta). Hcy induced MMP-9 activation by increasing NF-kappabeta-DNA binding. Moreover, P450 epoxygenase transfection or exogenous addition of 8,9-EET phosphorylated the AKT and attenuated Hcy-induced MMP-9 activation. This occurred, in part, by the inhibition of NF-kappabeta nuclear translocation, NF-kappabeta-DNA binding and activation of IKbetaalpha. The study unequivocally suggested the pivotal role of EETs in the modulation of Hcy/MMP-9 signal.

PMID:
18181170
PMCID:
PMC2364732
DOI:
10.1002/jcp.21356
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Substances, Grant support

Publication types

MeSH terms

Substances

Grant support

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center