Send to

Choose Destination
See comment in PubMed Commons below
Mol Ther. 2008 Mar;16(3):466-73. doi: 10.1038/ Epub 2008 Jan 8.

Freeze-dried tendon allografts as tissue-engineering scaffolds for Gdf5 gene delivery.

Author information

  • 1Center for Musculoskeletal Research, Department of Orthopaedics, University of Rochester, Rochester, New York 14642, USA.


Tendon reconstruction using grafts often results in adhesions that limit joint flexion. These adhesions are precipitated by inflammation, fibrosis, and the paucity of tendon differentiation signals during healing. In order to study this problem, we developed a mouse model in which the flexor digitorum longus (FDL) tendon is reconstructed using a live autograft or a freeze-dried allograft, and identified growth and differentiation factor 5 (Gdf5) as a therapeutic target. In this study we have investigated the potential of rAAV-Gdf5 -loaded freeze-dried tendon allografts as "therapeutically endowed" tissue-engineering scaffolds to reduce adhesions. In reporter gene studies we have demonstrated that recombinant adeno-associated virus (rAAV)-loaded tendon allografts mediate efficient transduction of adjacent soft tissues, with expression peaking at 7 days. We have also demonstrated that the rAAV-Gdf5 vector significantly accelerates wound healing in an in vitro fibroblast scratch model and, when loaded onto freeze-dried FDL tendon allografts, improves the metatarsophalangeal (MTP) joint flexion to a significantly greater extent than the rAAV-lacZ controls do. Collectively, our data demonstrate the feasibility and efficacy of therapeutic tendon allograft processing as a novel paradigm in tissue engineering in order to address difficult clinical problems such as tendon adhesions.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center