Send to

Choose Destination
Cell Res. 2008 Jan;18(1):73-84. doi: 10.1038/cr.2008.6.

Transcription-coupled nucleotide excision repair in mammalian cells: molecular mechanisms and biological effects.

Author information

Department of Toxicogenetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.


The encounter of elongating RNA polymerase II (RNAPIIo) with DNA lesions has severe consequences for the cell as this event provides a strong signal for P53-dependent apoptosis and cell cycle arrest. To counteract prolonged blockage of transcription, the cell removes the RNAPIIo-blocking DNA lesions by transcription-coupled repair (TC-NER), a specialized subpathway of nucleotide excision repair (NER). Exposure of mice to UVB light or chemicals has elucidated that TC-NER is a critical survival pathway protecting against acute toxic and long-term effects (cancer) of genotoxic exposure. Deficiency in TC-NER is associated with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). Recent data suggest that CSA and CSB play differential roles in mammalian TC-NER: CSB as a repair coupling factor to attract NER proteins, chromatin remodellers and the CSA- E3-ubiquitin ligase complex to the stalled RNAPIIo. CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1 and TFIIS. The emerging picture of TC-NER is complex: repair of transcription-blocking lesions occurs without displacement of the DNA damage-stalled RNAPIIo, and requires at least two essential assembly factors (CSA and CSB), the core NER factors (except for XPC-RAD23B), and TC-NER specific factors. These and yet unidentified proteins will accomplish not only efficient repair of transcription-blocking lesions, but are also likely to contribute to DNA damage signalling events.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center