Send to

Choose Destination
See comment in PubMed Commons below
Opt Lett. 2008 Jan 1;33(1):43-5.

Engineering space for light via transformation optics.

Author information

Birck Nanotechnology Center and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA.


Conceptual studies and numerical simulations are performed for imaging devices that transform a near-field pattern into magnified far-zone images and are based on high-order spatial transformation in cylindrical domains. A lens translating a near-field pattern from an almost circular input boundary onto a magnified far-field image at a flat output boundary is considered. The lens is made of a metamaterial with anisotropic permittivity and permeability both depending on a single "scaling" parameter of the transformation. Open designs of the lens with a truncated body (3/4-body and 1/4-body lenses) are suggested and analyzed. It is shown that the ideal full lens and the 3/4-body lens produce identical images. Numerical simulations of 1/4-body designs indicate that further truncation of the lens could limit its performance. A light concentrator "focusing" far-zone fields into a nanometer-scale area is also considered.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center